
WordPress and
Object-Oriented

Programming

Pressidium is a technology company that
builds powerful, secure and scalable infrastructure

for businesses. Our fully managed Enterprise Word-
Press platform is trusted by Digital Agencies, Media
Outlets, Tech startups and Fortune 500 companies.
It is considered to be vastly superior to competing

solutions on the market today.

From quality of service, workmanship and engineer-
ing, to sheer speed, security and site performance,

our platform is built to deliver.

WordPress and
Object-Oriented

Programming

For more free e-books, please visit:
pressidium.com/white-papers

Published by

https://pressidium.com/white-papers/

TABLE OF
CONTENTS

1. Introduction

The Limitations in Procedural Programming

How Object-Oriented Programming Solves Problems

The Features of Object-Oriented Programming

2. A Real World Example

A Real Life Scenario: Sending an SMS

The Application with a Procedural Approach

Expanding the Application with Procedural Approach

 - The Drawbacks with a Procedural Approach

The Application with an OOP Approach

Expanding the Application with the OOP approach

 - Adding More Functionality

What we've covered and what's next

3. A WordPress Example – Defining the Scope

Getting Started

Breaking it down

 - Flow

 - Hooks

 - Configuration Options

 - Error messages

4. Design

Dissecting the Settings Page

Thinking and Abstracting

Main Plugin File

Potential Classes

5. Implementation: The Administration Menu

Getting Started

Building an Administration Menu

 - The Constructor

 - What is $this?

 - Namespaces

 - Adding Hook Callbacks

 - Refactoring

Redesigning

 - Abstract Classes and Methods

The Settings API

6. Implementation: Registering the Sections

The Section Class

The Field Class

The Element Class

 - Polymorphism

 - Substitutability

 - Factories

Extending

7. Implementation: Managing WordPress Hooks

The Hooks Manager

Interface Segregation

8. Implementation: Options

WP_Options

 - Getting an option

 - Default options

 - Storing an option

 - Removing an option

Encapsulation/Abstraction

Dependencies

 - Decoupling

Single Responsibility

Revisiting the main plugin file

Organizing the files

Conclusion

Introduction

PART ONE

Introduction
PART ONE

7

If you are a WordPress developer it is likely that you write your code in
a procedural way. You set some simple ordered steps and follow them
to achieve the desired output and solve a problem. A simple example
is a WordPress loop like the one shown below:

In a loop, you first check whether you have posts that correspond to
the running query and if so, you start looping through the posts with
the while loop. The same goes for every custom function you will insert
in the functions.php file.

<?php

if (have_posts()) {

 while (have_posts()) {

 the_post();

 //

 // Post Content here

 //

 } // end while

} // end if

?>

8

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

In this document we’re going to transition away from procedural
programming and look at a style of programming called Ob-
ject-Oriented Programming (OOP).

We will examine how this is different from what you’ve used so far as a
programming style and take a look at some of its advantages. But
most importantly, we will explain how object-oriented concepts
work in a WordPress environment and the relation between them.

What we would also like to establish before we get further into this is
that it is important that you learn about the role of object-oriented
programming and when it’s suitable to be used. Learning how to
build an object-oriented plugin or theme may be suitable for your pro-
ject but it’s important to understand when this is the case. Hopefully,
by the end of your reading, you will be able to better understand when
and why a certain project may be suitable to be written in object-ori-
ented code.

9

WordPress itself has already pushed you into thinking procedurally.
And, though WordPress uses PHP objects all the time, it doesn’t follow
that WordPress itself is Object-Oriented. This is a common misinter-
pretation of what OOP is about and the reason many people believe
WordPress is Object-Oriented although it’s not.

It’s important to clarify that we’re not saying you should refrain from
using procedural programming but it is true that there are limitations
in this coding style. For example, when customizing a theme or
plugin, it is likely that you will achieve the desired HTML output by writ-
ing code in a procedural way. But what about the scalability and future
maintenance?

When building a custom plugin it is very important that you take stock
and assess how scalable it will be. For example, you will probably want
to be able to grow your plugin by adding further features as the plugin
matures. It’s at this point where you will start having difficulties organ-
izing your code when you code procedurally.

But even if you’re not coding plugins, with procedural programming
you always take the risk of reaching a point where you’re not sure how
everything fits together anymore. As a result, every small change you
make may have unintended consequences.

Object-oriented programming is used to solve more complicated
problems. It may share the same goal with procedural program-
ming, but in many cases offers a superior way of working. It allows
you to create bold solutions to a problem that are reusable, organ-
ized and secure.

The limitations in procedural
programming

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

10

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OP) has two important concepts:
Classes and Objects.

Classes are essentially a template used to make objects. Each object
has its own methods and set of properties and the value of those
properties may vary.

So before moving forward it is vital to make sure we understand what
an Object is. Let’s break down a simple sentence as an example:

‘I eat green apples’.

A Class defines the properties and behavior of all objects that use it.
Solving problems with OOP is achieved by combining these
programming ‘bricks’ the correct way.

How Object-Oriented Programming
Solves Problems

Apple is the Object

The verb ‘eat’ is
the method (function)

Green is the color of the Object
(an Object property)

Class: Apple -----> Object: Green apple
|
| color (Property) | green
| eat (method) | eat
| |

1
2
3
4
5

Design
review,
testing

Requirements

Implementation

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Before diving in, an important first step is to take some time to design
your proposed solution. In essence, what you need to do is:

1. Define the problem and what the plugin should do to solve it

2. Describe the classes and their relationships as well as the interaction
 between the objects

3. Turn everything into code

4. Review and test the project

While you are at this step, keep in mind that you’ll be lucky if you get it
perfect at the first attempt! You will need to start over until you get the
right concept that will solve the problem. Consider it as part of a
creative process that will offer you a set of tools you can later use as a
team with no conflicts.

Let’s get into the features of Object-Oriented programming and clarify
how it works, with the help of a simple metaphor.

11

Let’s say we have a boiler that we use to boil some water.

When we use the machine, we do it in a certain way, the only way the
manufacturer allows us. We cannot override the way the boiler runs
when we press the ‘On’ button and, to be honest, neither would we
want or need to.

That gives us two very important advantages.

First of all, the limited functionality (i.e. to boil some water) means the
system is both more robust and more secure. The limited feature set
and the provision of just an ‘On/Off’ button mean we, as the user, can’t
get anywhere near the mechanism of the boiler. By default, this means
there is less to go wrong and the system is more robust as a whole. The
simplicity of the operation also makes it much more user friendly with
pretty much anyone able to use it.

Keeping this in mind let’s see how this relates to Object-Oriented
programming. In theory, OOP has three valuable characteristics:

Encapsulation

Inheritance

Polymorphism

The Features of Object-Oriented
Programming

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

12

What Encapsulation does is to group the data and behaviour inside a
single entity. Inside the Class, you can define how it will be used (boiler
button) and control the visibility by using the Public, Protected or
Private labelling on Classes. This is what also makes it a very secure
system because it gives you the ability to control who has access. This
also means it’s easier to maintain and also use.

Inheritance is about helping you reuse code between your classes.
One such example is when a Class extends another Class. You might
have used this when extending the Walker Class to change the HTML
output of a tree-like data like a menu or comments structure. Under-
standing the relationship between your classes will enable you to
create reusable object-oriented code.

Finally Polymorphism is what makes all those relationships work
together, what defines what your Classes have in common, how to
reuse these common elements and whether they are related to
anything else.

But without some concrete examples it’s likely that all of the
above is still a little confusing.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

13

https://pressidium.com/blog/understanding-the-walker-class-in-wordpress/

A Real World
Example

PART TWO

PART TWO

A Real World
Example

This is more like, a “past” life scenario actually as SMS is used less and
less nowadays but as you’ll see, there is a reason we use this as an
example!

Suppose you have a mobile device and you want to send a text mes-
sage to one of your contacts. Keeping the example as simple as possi-
ble, the sequence of actions would be:

preparing the message in the device editor

selecting the recipient, and finally

sending the message.

A Real Life Scenario: Sending an SMS

Before we proceed with more specific coding examples using OOP,
we will try to explain how a real world scenario can be approached
with the different mindset required for OOP and how this is analyzed
using objects and classes.

15

Hello

To:

Hello

To:

John

George

Michael

Helen

Daniel

Hello

To: John

So let’s try and visualize the steps that you would follow in order to
send your message:

We added some more detailed descriptions of the actions but more or
less all that you do is 3 basic steps. You prepare the message in the
device editor, you select the recipient from your contacts, and then
send the message. And you are done! Your message is now sent.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Open Contacts

Search Contacts

Select Contact

Add Recipient

Open Editor

Compose Message

Write Message

Start

Send Message

Send Message

End

16

Now, if we were to represent in code an application that sends an SMS
message we should analyze which route is better to follow; the
procedural or OOP approach.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

17

function get_phone_number($contact) {

 // Code that finds the contact's number in the list of contacts

 return $phone_number;

}

function send_sms($contact, $message) {

 $phone_number = get_phone_number($contact);

 // Code that sends the message to this number

 print "Message Sent!";

}

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The Application with a Procedural
Approach
If you’re a WordPress plugin developer, you’re most likely familiar with
procedural programming.

As we described previously, procedural programming is a type of
imperative programming, where our programs consist of one or more
procedures. So, as a developer you break down your plugin into a
bunch of variables that hold your data, and functions that operate on
the data.

In our example above with the SMS message, you would perform a
series of actions that would lead to the desired result. As you may have
already guessed, you would have, for example, a variable that holds the
message’s text content, a function with a $contact parameter that
returns the phone number and finally, a function that sends the
message. In code it would look like this:

18

$text = "Hello John";

function send_message("John Doe", $text);

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Expanding the Application with Proce-
dural Approach
Let’s say that you want to improve this application and provide the
ability to send other kinds of messages as well, like an email for
example. The function that delivers the message would be different in
each case.

And you would use it like this:

So, you would complete a series of tasks that will lead you to the de-
sired result.

In this very simple example of course, that has limited and very specific
requirements, there is no reason to consider using OOP at all. Proce-
dural programming is more than enough to achieve your goal.

However, if you think of some scenarios as to how this application
could expand in the future, you might realize that, in the long run, you
could have issues in terms of scalability. We will try and explain why
below.

19

20

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

When sending an email, you need the contact’s email address, not the
phone number. Apart from this, we will need to add a parameter in the
final send_message() function that will correspond to the type of tech-
nology we use; email or SMS.

send_message()

Message Sent!!

is SMS

send_email() send_sms()$text

get_phone_number()

NO

get_email_address()

YES

function get_phone_number($contact) {

 // Code that finds the contact's number

 return $phone_number;

}

function get_email_address($contact) {

 // Code that finds the contact's email address

 return $email_address;

}

function send_sms($contact, $message) {

 $phone_number = get_phone_number($contact);

 // Code that sends the message to this number

 print "SMS Sent!";

}

function send_email($contact, $message) {

 $email_address = get_email_address($contact);

 // Code that sends the email to this number

 print "Email Sent!";

}

function send_message($contact, $message, $technology) {

 if ($technology == "SMS") {

 send_sms($phone_number, $message);

 } else if ($technology == "Email") {

 send_email($email_address, $message);

 }

}

21

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The corresponding code could look something like this:

22

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

So, it is not like this could not be implemented with a procedural ap-
proach. But if you are an experienced developer you’ve probably
already understood how this could become messy in the future.

The Drawbacks with a Procedural Approach
What if we had multiple types of messages? The if statements
would become annoyingly large. And, most importantly, what if you
had functions that use the send_message() function? In that case, you
would need to add the $technology parameter in all those functions
as well.

As your code grows, functions will be all over the place meaning you
will be starting to copy/paste chunks of code (never desirable), and
making a small change to a function might break several other func-
tions. We’ve all been there. You would want to avoid this and be able to
easily add features to your code without interfering in the structure
too much.

Object-oriented programming (or OOP) is a programming para-
digm that attempts to solve this issue by allowing us to structure our
plugin into small, reusable pieces of code, called classes. As we de-
scribed in our introduction article, a class is basically a template that
we use to create individual instances of the class, called objects.

An object contains data and code. We still have variables that can
store information, called properties. And procedures that operate
on the data, called methods.

<?php

interface MessagingCapable {

 public function send_message($contact, $message);

}

class Phone implements MessagingCapable {

 public function send_message($contact, $message) {

 print "You sent " . $message;

 }

}

function say_hi(MessagingCapable $device, $contact, $message) {

 $device->send_message($contact, $message);

}

Now let’s analyze the same scenario as above with an OOP approach.

First, we will define what objects we have here, what characteristics
each has and what actions they perform. The characteristics are what
later will be our properties and actions will be our functions or
methods as they are called in OOP.

Let’s think about what we have in the first scenario of sending an SMS
in the simplest way possible. There is a device which has a layout that
we use to send the SMS message. We have the message content, we
choose a contact as a recipient and finally the message.

The Application with an OOP Approach

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

23

24

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

We declare the Phone class which implements the MessagingCapable
interface. So we have to implement all the methods declared in it. The
 say_hi() function requires 3 parameters:

A device that supports messaging

A contact

The message

In order to actually send a message we use this function like this:

We demonstrated this simple scenario of sending a text message
by using classes. In the next section, we will see how we can
expand the application’s capabilities following the OOP approach
and while scaling up, we will examine where the OOP features play
their role as well as the benefits of using this technique.

$phone = new Phone();

say_hi($phone, "John Doe", "Hello John");

We are basically creating an object by instantiating the Phone class
and passing the contact and message content. This would output:

You sent "Hello John"

<?php

interface MessagingCapable {

 public function send_message($contact, $message);

}

class Phone implements MessagingCapable {

 public function send_message($contact, $message) {

 print "You sent "' . $message . '" SMS to ' . $contact;

 }

}

class Computer implements MessagingCapable {

 public function send_message($contact, $message) {

 print "You sent "' . $message . '" email to ' . $contact;

 }

}

function say_hi(MessagingCapable $device, $contact, $message) {

 $device->send_message($contact, $message);

}

Let’s add the ability to send emails as well, like we did before
procedurally.

Regardless of the device, we ideally would want to use the say_hi()
function the same way. Take a look at code below:

Expanding the Application with
the OOP approach

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

25

When we use this piece of code, we would pick up the mobile device
to send an SMS and the computer to send an email. We would either:

that would output You sent a "Hello John" SMS to John Doe and
 You sent a "Hello John" email to John Doe correspondingly.

Here we already start to detect some OOP features. We introduced
interfaces by using the MessagingCapable interface.

An interface declares a set of methods that must be implemented by
the class without defining how these methods are implemented. All
methods declared in an interface must be public.

PHP doesn’t support multiple inheritance, meaning a class cannot
inherit the properties/methods of multiple parent classes.

say_hi (new Phone(), "John Doe", "Hello John");

or:

say_hi (new Computer(), "John Doe", "Hello John");

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

26

Using a Phone to send a message will be different from using a Com-
puter. Instances of different classes act differently when asked to per-
form the same action (i.e. send_message()).

This is an example of Polymorphism. If we later create a new device,
we won’t need to modify our code to accommodate it, as long as
they all share the same interface.

We would also like to point out here that we already see the difference
in readability as well. The way we finally use this script by just coding:

This is totally straightforward to any developer that works on the pro-
ject. And of course, the more complex the plugin, it becomes more
obvious how helpful this is, especially when working in a team.

To try and explain better how easy it is to expand your plugin in
Object-Oriented Programming let’s try adding some more functionali-
ty.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

27

say_hi(new Computer(), "John", "Hi");

28

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Adding More Functionality
If we want to add the ability to browse the internet, we would just
add an extra interface for any device that could respond to this ability,
like a computer for example.

Here you can see how we can implement multiple interfaces.

So in the current Computer class we just added the extra interface to
be implemented, since a computer can send a message and browse
the internet, and the visit_website($url) method.

interface InternetBrowsingCapable {

 public function visit_website($url);

}

The implementation of this interface will be coded like this:

class Computer implements MessagingCapable, InternetBrowsingCapable {

 public function send_message($contact, $message) {

 print 'You sent a "' . $message . '" email to ' . $contact;

 }

 public function visit_website($url) {

 print 'You visited "' . $url . '"';

 }

}

NOTE: Of course, since visiting a url is totally irrelevant with the
say_hi() function we will also introduce a new function,
something like:

29

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

And that’s it! For any device that can visit a URL we can use this func-
tion like we did with computer. There are no worries that you will break
the rest of functionality. This shows the scalability available when
using OOP compared to procedural programming.

Let’s add a smartphone device just to demonstrate some more fea-
tures. Here is the whole code, with the smartphone class addition so
that you can have a better picture of what’s going on:

function visit_url(InternetBrowsingCapable $device, $url) {

 $device->visit_website($url);

}

<?php

interface MessagingCapable {

 public function send_message($contact, $message);
}

interface InternetBrowsingCapable {

 public function visit_website($url);
}

class Phone implements MessagingCapable {

 public function send_message($contact, $message) {

 print 'You sent a "' . $message . '" SMS to ' . $contact;
 }
}

class Computer implements MessagingCapable, InternetBrowsingCapable {

 public function send_message($contact, $message) {

 print 'You sent a "' . $message . '" email to ' . $contact;
 }

 public function visit_website($url) {

 print 'You visited "' . $url . '"';
 }
}

30

class Smartphone extends Phone implements InternetBrowsingCapable {

 public function visit_website($url) {

 print 'You visited "' . $url . '"';

 }

 public function send_message($contact, $message) {

 parent::send_message($contact, $message);

 print ' from your smartphone';

 }

}

function say_hi(MessagingCapable $device, $contact, $message) {

 $device->send_message($contact, $message);

}

function visit_url(InternetBrowsingCapable $device, $url) {

 $device->visit_website($url);

}

The Smartphone class extends the Phone parent class and imple-
ments the InternetBrowsingCapable interface. That means it can send
a message and visit a URL. Here, we detect the Inheritance feature. In
other words, we have a hierarchy of classes, a parent class (Phone) and
a subclass (Smartphone).

So a Smartphone object inherits all the properties and behaviors of the
parent Phone class. That way, inside the child class we can add a
method or override a method of the parent class, like we did with the
 send_message() in the Smartphone class. We did this to change the
output. We could totally ignore this method and use the send_mes-
sage() of the parent class as it is.

31

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

You can try the code yourself by pasting it in the code block to this
great PHP online tool. Under the code, try any of these code lines and
see the different results.

say_hi (new Phone(), "John Doe", "Hello John");

say_hi (new Computer(), "John Doe", "Hello John");

say_hi (new Smartphone(), "John Doe", "Hello John");

visit_url (new Smartphone(), "https://www.pressidium.com");

visit_url (new Computer(), "https://www.pressidium.com");

https://onlinephp.io/

32

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

For an even better understanding of the whole concept take a look at
the Class diagram of the above code.

GUIDE

public (+)

protected (#)

private (-)

abstract (italic)

inheritance

implementing an interface

<<Interface>>

MessagingCapable

+ send (contact, message)

<<Interface>>

InternetBrowsingCapable

+ visit_website (url)

Phone

+ send (contact, message)

+ call (contact)

Smartphone

+ visit_website (url)

Computer

+ send (contact, message)

+ visit_website (url)

33

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Contact {

 private $name;

 private $phone_number;

 private $email_address;

 public function __construct($name, $phone_number, $email_address) {

 $this->name = $name;

 $this->phone_number = $phone_number;

 $this->email_address = $email_address;

 }

 public function get_name() {

 return $this->name;

 }

 public function get_phone_number() {

 return $this->phone_number;

 }

 public function get_email_address() {

 return $this->email_address;

 }

}

As depicted above, when designing the relationships between classes,
we do not include the common elements in the child class. Further-
more, do not forget to pay attention in the guide on the left so you can
identify the relationships and the visibility of their properties and
methods.

If you would like to see the Encapsulation feature in action as well, try
and include a Contact class in any of the above example scripts we pro-
vided. The class would look like this:

34

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The __construct() method, by design, is called automatically upon
the creation of an object. Now when we instantiate the Contact class,
its constructor gets called and sets the values of its private properties.
Then we use our “getters” that are the get_name() , get_phone_number()
and get_email_address() public methods to retrieve these values.

Encapsulation is bundling the data with the methods that operate
on the data while restricting direct access preventing exposure of
hidden implementation details.

Hopefully at this point you are more familiar with Object-Oriented pro-
gramming in a more practical way. OOP really helps make it easier for
the application to expand in the future if necessary by being clear and
reusable.

Security is also improved because of encapsulation. In procedural
programming on the other hand, encapsulation is not emphasized. All
data is often global which means access is available from anywhere.

As a result of the above, code maintenance, productivity, scalability
and troubleshooting also become much easier for you and your
team.

What we've covered and what's next

35

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Moving forward, we will see this programming style in action by apply-
ing it to a WordPress plugin. Specifically, we will create a copy of the
Limit Login Attempts plugin version 1.7.1 created by Johan Eenfeldt but
converted with an Object-Oriented approach as much as possible.

During this process, we’ll break down the plugin flow and set the
requirements. Going forward, we’ll try out our first thoughts on the
plugin’s design and, in the implementation step, we’ll write the code.
During the implementation process we’ll make some back’n’forths
and redesign, if necessary, in order to get the desired results.

We’ll not get into details on all parts of the code though. Instead, we
would like to focus on sharing the way plugins are built the Object-Ori-
ented way. We are confident that, once you’ve finished reading, you
can very well create an OOP plugin of your own.

https://wordpress.org/plugins/limit-login-attempts/

A WordPress Example
– Defining the Scope

PART THREE

A WordPress Example
– Defining the Scope

PART THREE

37

PART THREE

A WordPress Example
– Defining the Scope

Our first goal is to define its requirements and, since we’re rewriting
an existing plugin, we’ll need to break its current version down and
fully understand how it works.

Our example, like we said, will be based on the Limit Login Attempts
plugin by Johan Eenfeldt.

We’ll thoroughly examine version 1.7.1 of the “Limit Login Attempts”
open source WordPress plugin, which was last updated 9 years before
the time this e-book is written. Then, we’ll rewrite it following an
object-oriented approach.

Now, without any further ado, let’s dive into this! We’ll take a closer
look at the current version of the plugin.

https://wordpress.org/plugins/limit-login-attempts/

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

38

If you want to follow along, you can download, install and activate
version 1.7.1 of the plugin.

This is what the admin page of the plugin looks like:

Getting Started

NOTE: If you’re a Pressidium customer, you can immediately
go to wp-admin → Settings → Limit Login Attempts, as we use
an adapted built-in version in our installations.

https://wordpress.org/plugins/limit-login-attempts/

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

39

The current version we use as a starting point already provides some
great functionality.

Limits the number of retries when logging in (for each IP address),
also providing a customizable limit.

Limits the number of attempts to log in using auth cookies in the
same way.

Informs the user about their remaining retries or lockout time on
the login page.

Notifies administrators when a user gets locked out.

Supports both direct and reverse proxy connections.

Offers a WordPress filter to whitelist IP addresses.

Now we already know what the plugin is supposed to do and what
features it offers, let’s take a closer look into its flow.

You don’t have to know much about the current version of Limit Login
Attempts to read the rest of this content. However, we’ll briefly explain
what it does, so if you want to take a look at the GitHub repository of
the object-oriented version, it will hopefully be easier to understand
what’s going on.

Breaking it down

https://github.com/pressidium/prsdm-limit-login-attempts

40

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Flow
Studying the main plugin file, almost line by line, we thought a
simplified diagram, grouping similar functionality together, might
help you wrap your head around the plugin’s code flow.

Basically, the plugin handles login attempts, determines whether a
user can be authenticated, keeps track of failed attempts, locks IP
addresses out if necessary, and provides an administration menu.

Get options and
setup filters
& actions

Get correct
remote address

Handle Cookies

Check if IP is ok
to login

Allow login
attempt?

Check if IP
is Whitelisted

Add failure
to login page
“Shake it!”

Is this WP
Multisite?

Handle error
message

Handle notification
on lockout

(email, log)

login attempt
failed Actions

Clean up old
lockouts and

retries, and save
supplied arrays

Setup global
variables from

options

Update options
in db from global

variables

Admin Stuff

Behind a proxy
or not

Sanitize
variables

Add admin
options page

Show log
on admin page

Admin page
content

Make sure post
was from this

page

Should we clear
log?

Check capabiity

Should we reset
counter?

Should we restore
current lockouts?

HTML output

Admin page
content

41

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Here’s a flow chart showing how the plugin handles a login attempt:

Start

End

Get IP address

Increment retries

Set normal
lockout
duration

Remove
old

lockouts

Remove
no longer

valid
entries

Notify
User

Increment
lockouts

Set long
lockout
duration

Reset retries

Reset retries

Read LockoutsRead Lockouts

Read Entries

Write to Database

Is
locked
out?

Is
about to
be locked

out?

Has
reached

max number
of lockout
/retries?

Have
expired?

NO

NO

NO

NO

YES

YES

YES

Is
IP address

white-
listed?

Is
IP address

white-
listed?

NO

NO

42

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Hooks
Upon further inspection of the plugin’s code, we listed all of the
actions and filters it hooks into:

 wp_login_failed , login_head , login_errors , wp_authenticate and

 admin_menu actions

 wp_authenticate_user , shake_error_codes and wp_authenticate
 filters

This is made possible by hooking into various parts of WordPress
during the authentication of a user.

43

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Configuration Options
As we’ve already mentioned, the plugin also provides an
administration menu to allow you to configure its options.

These options are:

Client type: Whether the site can be reached directly or through a
proxy server (defaults to direct)

Allowed retries: Lockout user after that many retries (defaults to 4
retries)

Lockout duration: Lockout user for that many minutes (defaults to
20 minutes)

Allowed lockouts: Allow that many lockouts before increasing the
lockout duration (defaults to 4 lockouts)

Long duration: Lockout user for that many hours when the lockout
duration is increased (defaults to 24 hours)

Valid duration: Reset the failed login attempts after that many hours
(defaults to 12 hours)

Cookies: Whether to limit malformed/forged cookies (enabled by
default)

Lockout notify: Notify administrator on lockout (logging, sending an
email, both, or none)

Notify email after: If notify by email is selected, send an email after
that many lockouts (defaults to 4 lockouts)

44

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Error messages
The plugin also customizes the error messages that will be displayed
when a login fails.

If a user isn’t currently locked out, it will display the remaining number
of allowed retries. Otherwise, if a user is already locked out, it will
display the time remaining till their lockout gets lifted.

It also omits any information indicating the existence of the provided
username which is intentional in order to prevent username
enumeration.

NOTE: Avoiding inconsistent error messages that might
accidentally tip off an attacker whilst and ensuring that they
only contain minimal details is important to help maintain site
security. Otherwise, a potential attacker might be able to
discover (or confirm) valid usernames by trying different values
until the wrong password error message is displayed. You can
read more about that at “CWE-204: Observable Response
Discrepancy”.

https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/204.html

45

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Next up, we’ll discuss how we came up with the design of our new and
improved plugin in order to provide the exact same features the
current one does, while taking advantage of what OOP has to offer.
That is, our code will (hopefully) be reusable, extensible and readable.

Design

PART FOUR

PART FOUR

Design

Now that we’ve got clearly defined the requirements, it is time to start
thinking about the design of our new and improved plugin!

We’d like to remind you that this step may take you a long time when
you try it out on your own projects. You probably won’t get everything
right the first time either. Odds are you’ll come up with a design, start
implementing it, and then realize that you need to go back and
rethink your approach.

It is totally worth the effort though so take as much time as necessary
to get everything just right. A well-structured project will make it
easier to maintain and extend it, and even reuse its code in other
projects so in the long run it’s a good use of time.

Having said that, we will focus on some key parts of the plugin and
discuss how we came up with our design.

47

Let’s take a closer look at the admin page of the plugin.

You will notice that there is a title (“Limit Login Attempts Settings”),
several sections containing some fields, and a “Change Options”
button at the bottom of the page.

Each section consists of a title, like “Statistics”, and a few fields.

Each field has a title on the left, and the rest of its content on the right
side. There are text fields, radio buttons and checkboxes and, some of
them, like “Total Lockouts”, only display information and cannot be
directly modified by the admin user.

Some fields also include a description, like the “Site Connection” field,
but not all of them.

Dissecting the Settings Page

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

48

The WordPress Settings API allows us to register settings pages,
sections within those pages and fields within the sections:

Pages → Sections → Fields

We thought, why not add one more “layer”, the Elements, in order to
make our plugin easier to extend in the future.

Pages → Sections → Fields → Elements

So, Pages and Sections are what we’ve already explained above, and
Fields will contain Elements of any content type on the right side.

Taking under consideration all these different kinds of elements, we
went with an Element class and several classes, extending it, for the
checkboxes, radio buttons, numbers etc. that will render different
output.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

49

We may also need to add more pages and sections in the future. So
it’s likely that we’d need to extend these admin page and section
classes.

The same goes for the fields. The classes for “Total lockouts”, “Active
lockouts” etc. will extend the same (parent) class.

Here’s a simplified visual that demonstrates those relations:

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Admin Page Section

Element Notification Table

Field

The Classes

Settings
Page

Total
Lockouts

Active
Lockouts

General
Options

Statistics

Radio
Element

Checkbox
Element

Email
Notification

Lockout
Logs Table

Number
Element

inheritance

GUIDE

50

Of course, not all “components” are included in the diagram.

A structure like this makes the plugin easier to extend; we’re able to
easily add a field, element or section if the need arises. We’ll be able
to easily add more components—fields, elements, or sections—by
creating new child classes, without having to modify existing ones.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

51

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Statistics Lockout Logs Table

Element

Abstractions

Lockout
Logs Table

Radio
Element

Checkbox
Element

Number
Element

UI Interface

Active
Lockouts

Total
Lockouts

Now it’s a great time to start thinking about what the various
components of our plugin do. During the design phase, we don’t have
to go into much detail about how something works.

For example, consider all elements, tables, statistics and pretty much
anything else that is going to be displayed to the user. They might be
separate components with nothing in common, but will all eventually
render some output. Therefore, some functionality will be common
for components that are otherwise completely unrelated. Of course,
this extends to the rest of our components as well.

Thinking and Abstracting

inheritance
implementation

GUIDE

52

In the above visual, we see how a UI interface is implemented by
multiple classes.

Pay attention to the fact that the UI interface is implemented by the
Statistics, Lockout Logs, Table, and Element classes that are referred to
as parent classes. There’s no need for the Radio/Number/Checkbox
Element classes to implement the interface directly, since they inherit
all interfaces from their parent class. However, a child class could
override a method of its parent class.

Since we know that our plugin’s going to deal with settings, we can
safely assume that we’ll read and write their values. That is, being able
to get, set, and remove options.

All these actions will be bundled together in a class. We’ll probably
store our options in the WordPress database or something like that.
For now, we don’t have to care about how or where we’re going to
store our data.

We can keep the get/set/remove options abstraction in our minds,
simplifying things conceptually, and keep designing our plugin.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Here, we’ll provide some information about the plugin to WordPress
through the header comment and perform some initialization. We’ll
organize our code, by wrapping everything in a small class.

Depending on how the classes of our plugin will work together, the

Main Plugin File

53

main class will have to instantiate most of them. As far as we know, this
will include classes related to options, admin pages, retries and
lockouts.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Main Plugin File

Plugin Main Class

Settings
Page

Lockouts

RetriesOptions

We took some time to try and figure out what classes we’re going to
need and we ended up with a list as follows:

Retries

Lockouts

Cookies

Error messages

Email notifications

Admin notices

Buttons

Potential Classes

54

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Lockout logs

Active/Total lockouts

IP address

Keep in mind that there’s no one single “correct” way to structure your
plugin. As with most things in software development, there are
multiple, equally valid, ways to solve a problem.

In the “General” section, for example, the relations between our classes
would look like this:

General Options

Field

SectionAdmin Page

Element

Notify
on lockout

Handle
cookie login

Settings
Section

Settings
Page

Number
Element

Radio
Element

Checkbox
Element

Site
connection

Lockout

inheritance
usage code/flow

GUIDE

55

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The “Statistics” section will be similar to this:

Statistics

Field

SectionAdmin Page

Element

Active
LockoutsStatisticsSettings

Page

Active
Lockouts

Total
Lockouts

Total
Lockouts

inheritance
usage code/flow

GUIDE

56

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Finally, the “Lockout logs” will be very similar to “Statistics”:

So far we defined our requirements and thought of a design for our
new and improved plugin. We explained how we came up with our
structure and also provided some simple diagrams showing how
our classes will be related to each other.

Now, we’ll get into the most exciting part where we’ll dig deeper into
how we implemented it!

Lockout Logs

Field

SectionAdmin Page

Element

LogStatisticsSettings
Page

Lockout
Logs

Lockout
Log

inheritance
usage code/flow

GUIDE

57

Implementation:
The Administration

Menu

PART FIVE

PART FIVE

Implementation:
The Administration Menu

We assume you’re familiar with WordPress plugin development in
general, so we’ll focus on the object-oriented aspects of our plugin. If
you’re new to plugin development or need a refresher, you should
learn how to build your first WordPress plugin first.

Let’s get started like we always do, by creating a new prsdm-lim-
it-login-attempts.php file, under our plugin directory
(i.e. /wp-content/plugins/prsdm-limit-login-attempts).

Getting Started

We’ll walk you through some parts of the implementation, one step at
a time, talking about the very basics of object-oriented programming,
PHP syntax, some core concepts, and we’ll even glance over the
S.O.L.I.D. principles.

59

https://pressidium.com/blog/how-to-build-your-first-wordpress-plugin/

The main plugin file is going to include the Plugin Header you’re
already familiar with:

That’s all we need for now. We’ll revisit this file later!

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

/**

 * Plugin Name: PRSDM Limit Login Attempts

 * Plugin URI: https://pressidium.com

 * Description: Limit rate of login attempts, including by way of cookies,

for each IP.

 * Author: Pressidium

 * Author URI: https://pressidium.com

 * Text Domain: prsdm-limit-login-attempts

 * License: GPL-2.0+

 * Version: 1.0.0

 */

And a simple if statement to prevent direct access to it.

if (! defined('ABSPATH')) {

 exit;

}

60

https://developer.wordpress.org/plugins/plugin-basics/header-requirements/

When you’re developing a plugin, you often need to provide your
users with a way to configure it. That’s where a settings page comes
in. To build one, we’re going to add an administration menu that utiliz-
es the WordPress Settings API.

So, let’s start thinking about how our object-oriented API would look.

Ideally, we’d like to instantiate our Pressidium_LLA_Settings_Page and
be done with it. To create an instance of a class, the new keyword
must be used.

Our class name has to be prefixed with a unique identifier, Pressidi-
um_LLA_ to prevent any naming collisions with other WordPress
plugins. Prefixes prevent other plugins from overwriting and/or acci-
dentally calling our classes. As long as our class names are unique—or
we use namespaces—there won’t be any conflicts with other plugins.

Building an Administration Menu

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

new Pressidium_LLA_Settings_Page();

Now, let’s think about how our Pressidium_LLA_Settings_Page class
would look.

We’ll start by creating a new class, using the class keyword:

class Pressidium_LLA_Settings_Page {}

61

https://developer.wordpress.org/plugins/administration-menus/
https://developer.wordpress.org/plugins/settings/settings-api/

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The Constructor
Now, we’ll hook into admin_menu and admin_init. To keep things
simple, we’ll just call add_action() in our constructor (spoiler alert: we’ll
change this later).

Classes which have a constructor, call this method when an object
gets instantiated. So, the __construct() method is great for any
initialization we might want to perform.

Let’s take a closer look at our add_action() calls. If you’ve developed
WordPress plugins in the past, you might have expected something
like this:

class Pressidium_LLA_Settings_Page {

 /**

 * Settings_Page constructor.

 */

 public function __construct() {

 add_action('admin_menu', array($this, 'add_page'));

 add_action('admin_init', array($this, 'register_sections'));

 }

}

add_action('admin_menu', 'my_plugin_prefix_add_page');

62

https://developer.wordpress.org/reference/hooks/admin_menu/
https://developer.wordpress.org/reference/hooks/admin_init/
https://developer.wordpress.org/reference/functions/add_action/

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

But instead, we’ve got:

You might be confused about the use of an array here. Whenever we
want to pass a method of an instantiated object as a callback/callable,
we can use an array containing an object at index 0, and a method
name at index 1.

add_action('admin_menu', array($this, 'add_page'));

What is $this?
It’s a pseudo-variable that is available when a method is called from
within an object context. $this is the value of the calling object. In
this case, $this is an instance of Pressidium_LLA_Settings_Page.

Plus, all of our “functions” are now methods, wrapped in a class, so
there’s no need to prefix our method names.

Namespaces
Namespaces in PHP allow us to group related classes, interfaces,
functions, etc., preventing naming collisions between our code, and
internal PHP or third-party classes/functions.

Let’s go ahead and use them, so we don’t have to prefix any of our
classes moving forward.

We’ll declare a namespace using the namespace keyword.

63

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

namespace Pressidium;

namespace Pressidium\Limit_Login_Attempts;

Namespaces can be defined with sub-levels.

namespace Pressidium\Limit_Login_Attempts\Pages;

Since we’re building a settings page, we’ll declare a “pages” sub-name-
space to group anything related to administration pages together.

namespace Pressidium\Limit_Login_Attempts\Pages;

class Settings_Page {

 // ...

We can finally get rid of the Pressidium_LLA_ prefix!

Another WordPress plugin containing a Settings_Page class isn’t an
issue anymore, since its class and our class won’t live in the same name-
space.

64

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

namespace Pressidium\Limit_Login_Attempts\Pages;

$settings_page = new Settings_Page();

When instantiating our Settings_Page within the same namespace
we can omit it:

use Pressidium\Limit_Login_Attempts\Pages\Settings_Page;

$settings_page = new Settings_Page();

Alternatively, we could import our class with the use operator:

namespace Another\Namespace;

$settings_page = new

\Pressidium\Limit_Login_Attempts\Pages\Settings_Page();

When instantiating our Settings_Page outside of its namespace, we
have to specify it like this:

65

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Adding Hook Callbacks
Now, let’s declare these add_page() and register_sections() methods.

class Settings_Page {

 /**

 * Settings_Page constructor.

 */

 public function __construct() {

 add_action('admin_menu', array($this, 'add_page'));

 add_action('admin_init', array($this, 'register_sections'));

 }

 /**

 * Add this page as a top-level menu page.

 */

 public function add_page() {

 // TODO: Implement this method.

 }

 /**

 * Register sections.

 */

 public function register_sections() {

 // TODO: Implement this method.

 }

}

66

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

That seems like a convoluted way to develop WordPress plugins. It’s
simply calling WordPress functions, with extra steps.

Well, that’s not exactly “reusable”, we’d still have to write all this extra
code for every administration menu/page we want to add.

public function add_page() {

 add_menu_page(

 __('Limit Login Attempts Settings', 'prsdm-limit-login-attempts'

),

 __('Limit Login Attempts', 'prsdm-limit-login-attempts'),

 'manage_options',

 'prsdm_limit_login_attempts_settings',

 array($this, 'render'),

 'dashicons-shield-alt',

 null

);

}

Our add_page() method will just call the add_menu_page() WordPress
function.

67

https://developer.wordpress.org/reference/functions/add_menu_page/

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Refactoring
Let’s go ahead and refactor our code a bit to take advantage of
object-oriented programming and make our code reusable. We’ll start
by replacing our hardcoded values in add_page() with a few methods,
like so:

We’ll define these methods as protected , so they can be accessed
only within the class itself and by its child/parent classes.

public function add_page() {

 add_menu_page(

 $this->get_page_title(), // page_title

 $this->get_menu_title(), // menu_title

 $this->get_capability(), // capability

 $this->get_slug(), // menu_slug

 array($this, 'render'), // callback function

 $this->get_icon_url(), // icon_url

 $this->get_position() // position

);

}

protected function get_page_title() { /* ... */ }

protected function get_menu_title() { /* ... */ }

protected function get_capability() { /* ... */ }

protected function get_slug() { /* ... */ }

protected function get_icon_url() { /* ... */ }

protected function get_position() { /* ... */ }

68

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Great! We can now use this class as a reusable, generic class to
extend from.

We told you this was probably going to happen eventually. Here we
are, rethinking the design of our class while building it.

Since this is going to be our base class, we’ll rename it to a more gener-
ic name, like Admin_Page . So far, it looks like this:

Redesigning

class Admin_Page {

 /**

 * Admin_Page constructor.

 */

 public function __construct() {

 add_action('admin_menu', array($this, 'add_page'));

 add_action('admin_init', array($this, 'register_sections'));

 }

 /**

 * Add this page as a top-level menu page.

 */

 public function add_page() {

 add_menu_page(

 $this->get_page_title(), // page_title

 $this->get_menu_title(), // menu_title

 $this->get_capability(), // capability

 $this->get_slug(), // menu_slug

 array($this, 'render'), // callback function

 $this->get_icon_url(), // icon_url

 $this->get_position() // position

);

70

 }

 /**

 * Register sections.

 */

 public function register_sections() {

 // TODO: Implement this method.

 }

 protected function get_page_title() { /* ... */ }

 protected function get_menu_title() { /* ... */ }

 protected function get_capability() { /* ... */ }

 protected function get_slug() { /* ... */ }

 protected function get_icon_url() { /* ... */ }

 protected function get_position() { /* ... */ }

}

That’s a great example of inheritance, one of the core concepts of
object-oriented programming. When extending a class, the child
class— Settings_Page , in this case—inherits all of the public and pro-
tected methods, properties, and constants from the parent class.

We can make use of this and set some default values. For example,
we’ll set a generic icon for all menu pages, by defining our
 get_icon_url() method like this:

We can now create a separate Settings_Page that extends that
 Admin_Page base class.

class Settings_Page extends Admin_Page {

 // ...

}

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Unless a class overrides those methods, they will retain their original
functionality. So, by default, all child classes are going to use that gener-
ic icon.

However, if we want to set another icon for a specific menu page, we can
simply override the get_icon_url() method in our child class, like so:

class Admin_Page {

 // ...

 /**

 * Return the menu icon to be used for this menu.

 *

 * @link https://developer.wordpress.org/resource/dashicons/

 *

 * @return string

 */

 protected function get_icon_url() {

 return 'dashicons-admin-generic';

 }

}

class Settings_Page extends Admin_Page {

 protected function get_icon_url() {

 return 'dashicons-shield-alt';
 }

}

71

72

There are some values, though, that must be different for each child
class. For instance, the menu slug—the fourth argument of
 add_menu_page() —should be unique for each menu page.

If we’d define this method in our Admin_Page base class, we’d need a
way to make sure that every single child class overrides this method.
Well, we can do something even better. We can declare the method’s
signature and completely skip its implementation.

Enter abstract methods!

Abstract Classes and Methods
Methods defined as abstract simply declare the method’s signature
and they cannot define its implementation.

/**

 * Return page slug.

 *

 * @return string

 */

abstract protected function get_slug();

Any class that contains at least one abstract method must also be
abstract. That means, our Admin_Page class should be defined as
abstract as well.

abstract class Admin_Page {

 // ...

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

73

It’s also important to point out here that classes defined as abstract
cannot be instantiated. So, we can no longer directly instantiate
 Admin_Page.

Here’s also a visualization of the class:

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Settings_Page extends Admin_Page {

 // ...

 protected function get_slug() {

 return 'prsdm_limit_login_attempts_settings';

 }

 // ...

}

When inheriting from an abstract class, the child class must define all
methods marked abstract in the declaration of its parent class. Mean-
ing, that our Settings_Page has to implement the get_slug() method.

74

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

In the same way, we should implement the rest of the protected meth-
ods the add_page() needs.

Before proceeding on how we’ll register the sections and fields of the
admin page and render their content, let’s talk a bit about settings in
WordPress.

We’ll assume you’re already familiar with the Settings API. But, just in
case, here’s the gist of it:

settings_fields() — Outputs nonce, action, and option_page fields
for a settings page. Basically, the hidden form fields.

do_settings_sections() — Prints out all settings sections (and their
fields) added to a particular settings page.

add_settings_section() — Adds a new section to a settings page.

add_settings_field() — Adds a new field to a section of a settings
page.

register_setting() — Registers a setting and its data.

The Settings API

If you are not already familiar with this, you can pause reading
this e-book and check our related article on how to build the
settings page for a custom plugin.

https://developer.wordpress.org/plugins/settings/settings-api/
https://developer.wordpress.org/reference/functions/settings_fields/
https://developer.wordpress.org/reference/functions/do_settings_sections/
https://developer.wordpress.org/reference/functions/add_settings_section/
https://developer.wordpress.org/reference/functions/add_settings_field/
https://developer.wordpress.org/reference/functions/register_setting/
https://pressidium.com/blog/adding-fields-to-the-wordpress-menu-items-the-plugins-settings-page/
https://pressidium.com/blog/adding-fields-to-the-wordpress-menu-items-the-plugins-settings-page/

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Now that we’re on the same page, let’s get back to our
 register_sections() method. Once again, we have to take a step back
and think about our API.

Since we’ve defined the add_page() method in the Admin_Page class,
we’ll also define the render() method there as well. We’ll pass the
return values of our other methods as arguments to the WordPress
functions.

abstract class Admin_Page {

 // ...

 /**

 * Render this admin page.

 */

 public function render() {

 ?>

 <div class="wrap">

 <form action="options.php" method="post">

 <h1><?php echo esc_html($this->get_page_title()); ?></h1>

 <?php

 settings_fields($this->get_slug());

 do_settings_sections($this->get_slug());

 submit_button(__('Change Options',

'prsdm-limit-login-attempts'));

 ?>

 </form>

 </div>

 <?php
 }

}

76

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

That way, we won’t have to bother directly with these WordPress func-
tions ever again. That’s because any admin page we may add in the
future will be built through a child class just like the Settings_Page ,
and its rendering will be done through the inherited render()
method of the Admin_Page parent class.

Great! We created the classes that are responsible for registering an
administration menu and adding a settings page.

In the next step , we’ll keep building our settings page and register
its sections, fields, and elements.

Implementation:
Registering the Sections

PART SIX

PART SIX

Implementation:
Registering the Sections

As we have already explained, an admin page consists of sections,
each section contains one or more fields, and each of those fields
contain one or more elements.

78

How would that look in code?

public function register_sections() {

 $my_section = $this->register_section(/* ... */);

 $my_field = $my_section->add_field(/* ... */);

 $my_element = $my_field->add_element(/* ... */);

}

Alright, that seems easy to use and we can already tell that we’ll proba-
bly need to create three new classes: Section , Field , and Element .

Let’s take a moment and ask ourselves what we know so far about
these classes.

 $my_section->add_field() → The Section class should be able to add
(and store) a new Field object.

 $my_field->add_element() → The Field class should be able to add
(and store) a new Element object.

We’ll also write the add_field() method to create and add a new field.

This $fields variable is a class member and it’s what we call a proper-
ty. Properties are PHP variables, living in a class, and they can be of any
data type (string , integer , object , etc.).

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Section {}

class Field {}

class Element {}

class Section {

 /**

 * @var Field[] Section field objects.

 */

 protected $fields = array();

79

We’ll also write the add_field() method to create and add a new field.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

public function add_field() {

 $field = new Field(/* ... */);

 $this->fields[] = $field;

 return $field;

}

This method creates a new Field object, adds it to the fields proper-
ty and returns that newly-created object. Pretty straightforward.

Let’s repeat the same process for the Field class as well.

class Field {

 /**

 * @var Element[] Field elements.

 */

 private $elements = array();

 /**

 * Create a new element object.

 *

 * @return Element

 */

 private function create_element() {

 return new Element(/* ... */);

 }

 /**

 * Add a new element object to this field.

 */

}

 public function add_element() {

 $element = $this->create_element();

 $this->elements[] = $element;

 }

That’s a start! What’s next?

81

82

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

We need to call add_settings_section(), when a new section is created.
Once again, the constructor method is a great way to perform our
initialization. Let’s add it in the class:

It seems that a Section needs a slug-name to identify it (used in the id
attribute of tags). It can also have a title, a description, and belongs to
a specific page.

The Section Class

class Section {

 // ...

 public function __construct() {

 add_settings_section(

 $this->id,

 $this->title,

 array($this, 'print_description'),

 $this->page

);

 }

}

https://developer.wordpress.org/reference/functions/add_settings_section/

83

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Section {

 /**

 * @var Field[] Section field objects.

 */

 protected $fields = array();

 /**

 * @var string Section title.

 */

 public $title;

 /**

 * @var string Section id.

 */

 public $id;

 /**

 * @var string Slug-name of the settings page this section belongs to.

 */

 public $page;

 /**

 * @var string Section description.

 */

 public $description;

84

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

We could set the title of the section, by doing something like this:

Well, that’s not quite right. Even though the code above it’s perfectly
valid, it doesn’t actually do what we expect it to do.

The constructor method is executed when a new Section object is
created. So add_settings_section() will be called before we even get a
chance to set the title. As a result, the section won’t have a title.

The title needs to be available during the initialization of our object, so
we need to do this in the constructor.

$section = new Section();

$section->title = __('Hello world', 'prsdm-limit-login-attempts');

class Section {

 /**

 * @var string Section title.

 */

 private $title;

 public function __construct($title) {

 $this->title = $title;

 // ...

 }

 // ..

85

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Beware that $this->title refers to the title class property, where
 $title refers to the constructor’s argument.

Here, we also take advantage of the visibility. Since our $title prop-
erty will only be accessed by the class that defined it, we can declare
it private . Therefore, we prevent it from being accessed outside the
class.

Oh, and we also have to add a print_description() method which is
going to, well, print the section’s description.

class Section {

 /**

 * @var string Section title.

 */

 private $title;

 public function __construct($title) {

 $this->title = $title;
 // ...

 }

 // ..

/**

 * Print the section description.

 */

public function print_description() {

 echo esc_html($this->description);

}

10

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Putting all together, our Section class looks like this.

class Section {

 /**

 * @var Field[] Section field objects.

 */

 protected $fields = array();

 /**

 * @var string Section title.

 */

 private $title;

 /**

 * @var string Section id.

 */

 private $id;

 /**

 * @var string Slug-name of the settings page this section belongs to.

 */

 private $page;

 /**

 * @var string Section description.

 */

 private $description;

 /**

 * Section constructor.

 *

 * @param string $id Section id.

 * @param string $title Section title.

 * @param string $page Slug-name of the settings page.

 * @param string $description Section description.

 */

87

 public function __construct($id, $title, $page, $description) {

 $this->id = $id;

 $this->title = $title;

 $this->page = $page;

 $this->description = $description;

 add_settings_section(

 $this->id,

 $this->title,

 array($this, 'print_description'),

 $this->page

);

 }

 /**

 * Print the section description.

 */

 public function print_description() {

 echo esc_html($this->description);

 }

 /**

 * Create and add a new field object to this section.

 */

 public function add_field() {

 $field = new Field(/* ... */);

 $this->fields[] = $field;

 return $field;

 }

}

In a similar way to Section , we can now proceed and build the
 Field class, which is going to utilize the add_settings_field() Word-
Press function.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The Field Class

class Field {

 /**

 * @var Element[] Field elements.

 */

 private $elements = array();

 /**

 * @var string ID of the section this field belongs to.

 */

 private $section_id;

 /**

 * @var string Field description.

 */

 private $description;

 /**

 * Field constructor.

 *

 * @param string $id Field ID.

 * @param string $label Field label.

 * @param string $page Slug-name of the settings page.

 * @param string $section_id ID of the section this field belongs to.

 * @param string $description Field description.

 */

 public function __construct($id, $label, $page, $section_id,

$description) {

 $this->section_id = $section_id;

 $this->description = $description;

 add_settings_field(

 $id,

 $label,

 array($this, 'render'),

 $page,

 $this->section_id

);

 }

}

Here, we’d also like to provide default values for the ID, label, and
description of the field. We can do this by passing an options array to
the constructor and use the wp_parse_args() WordPress function to
parse those options.

class Field {

 /**

 * @var int Number of fields instantiated.

 */

 private static $number_of_fields = 0;

 // ...

 /**

 * Field constructor.

 *

 * @param string $section_id ID of the section this field belongs to.

 * @param string $page Slug-name of the settings page.

 * @param array $options Options.

 */

 public function __construct($section_id, $page, $options = array()) {

 self::$number_of_fields++;

 $options = wp_parse_args(

 $options,

https://developer.wordpress.org/reference/functions/wp_parse_args/

 array(

 'label' => sprintf(

 __('Field #%s', 'prsdm-limit-login-attempts'),

 self::$number_of_fields

 'id' => 'field_' . self::$number_of_fields,

 'description' => ''

)

);

 $this->section_id = $section_id;

 $this->description = $options['description'];

 add_settings_field(

 $options['id'],

 $options['label'],

 array($this, 'render'),

 $page,

 $this->section_id

);

 }

}

The wp_parse_args() function will allow us to merge the user defined
values (the $options array) with the default values.

array(

 'label' => sprintf(

 __('Field #%s', 'prsdm-limit-login-attempts'),

 self::$number_of_fields

),

 'id' => 'field_' . self::$number_of_fields,

 'description' => ''

)

90

https://developer.wordpress.org/reference/functions/wp_parse_args/

91

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

/**

 * @var int Number of fields instantiated.

 */

private static $number_of_fields = 0;

We also have to set unique labels for each field. We can handle this by
setting the label to a prefix ('field_') followed by a number, which
will be increased every time a new Field object is created. We’ll store
this number in the $number_of_fields static property.

The self keyword is used to refer to the current class and, with the
help of the scope resolution operator :: (commonly called “double
colon”), we can access our static property.

That way, in the constructor, we always access the same
 $number_of_fields property, increasing its value each time an object
is created, which results in a unique label attached to each field.

Going forward, the render() method, after printing the description (if
one exists), iterates through all the elements and renders each one of
them.

'id' => 'field_' . self::$number_of_fields

A static property can be accessed directly without having to create an
instance of a class first.

10

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

public function render() {

 if (! empty($this->description)) {

 printf(

 '<p class="description">%s</p>',

 esc_html($this->description)

);

 }

 foreach ($this->elements as $key => $element) {

 $element->render();

 }

}

Putting it all together…

class Field {

 /**

 * @var int Number of fields instantiated.

 */

 private static $number_of_fields = 0;

 /**

 * @var Element[] Field elements.

 */

 private $elements = array();

 /**

 * @var string ID of the section this field belongs to.

 */

 private $section_id;

 /**

 * @var string Field description.

 */

 private $description;

 /**

 * Field constructor.

 *

 * @param string $section_id ID of the section this field belongs to.

 * @param string $page Slug-name of the settings page.

 * @param array $options Options.

 */

 public function __construct($section_id, $page, $options = array()) {

 self::$number_of_fields++;

 $options = wp_parse_args(

 $options,

 array(

 'label' => sprintf(

 /* translators: %s is the unique s/n of the field. */

 __('Field #%s', 'prsdm-limit-login-attempts'),

 self::$number_of_fields

 'id' => 'field_' . self::$number_of_fields,

 'description' => ''

)

);

 $this->section_id = $section_id;

 $this->description = $options['description'];

 add_settings_field(

 $options['id'],

 $options['label'],

 array($this, 'render'),

 $page,

 $this->section_id

);

 }

 /**

 * Create a new element object.

 *

 * @return Element

 */

 private function create_element() {

 return new Element(/* ... */);

 }

 /**

 * Add a new element object to this field.

 */

 public function add_element() {

 $element = $this->create_element();

 $this->elements[] = $element;

 }

 /**

 * Render the field.

 */

 public function render() {

 if (! empty($this->description)) {

 printf(

 '<p class="description">%s</p>',

 esc_html($this->description)

);

 }

 foreach ($this->elements as $key => $element) {

 $element->render();

 }

 }

}

94

Going forward, we’ll build the Element class in a similar fashion!

We’ll start writing the class like this:

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The Element Class

class Element {

 /**

 * @var int Number of elements instantiated.

 */

 private static $number_of_elements = 0;

 /**

 * @var string Element label.

 */

 private $label;

 /**

 * @var string Element name.

 */

 private $name;

 /**

 * @var mixed Element value.

 */

 private $value;

 /**

 * Element constructor.

 *

 * @param string $section_id Section ID.

 * @param array $options Options.

 */

 public function __construct($section_id, $options = array()) {

 self::$number_of_elements++;

 $options = wp_parse_args(

 $options,

 array(

 'label' => sprintf(

 /* translators: %s is the unique s/n of the element. */

 __('Element #%s', 'prsdm-limit-login-attempts'),

 self::$number_of_elements

),

 'name' => 'element_' . self::$number_of_elements

)

);

 $this->label = $options['label'];

 $this->name = $options['name'];

 $this->value = '';

 }

 /**

 * Render the element.

 */

 public function render() {

 ?>

 <fieldset>

 <label>

 <input

 type="number"

 name="<?php echo esc_attr($this->name); ?>"

 id="<?php echo esc_attr($this->name); ?>"

 value="<?php echo esc_attr($this->value); ?>"

 />

 <?php echo esc_html(); ?>

 </label>

 </fieldset>

 <?php

 }

}

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Make sure you’re escaping your output—like we’re doing here, using
the esc_attr() and esc_html() WordPress functions—to prevent any
cross-site scripting attacks. Even though we’re rendering our
elements only in admin pages, it’s still a good idea to always escape
any output data.

When we were gathering the plugin’s requirements, we noticed that
there are multiple element types—checkboxes, radio buttons,
number fields etc. When we came up with our design, we made the
decision to build an Element class meant to be extended. So, we know
we’re going to end up with a child class for each element type.

The output should differ depending on the element type, so we’ll turn
 render() into an abstract method. That means, of course, that the
class itself should also be abstract.

NOTE: Cross-site scripting (or XSS) is a type of security vulnerabili-
ty typically found in web applications. XSS enables attackers to
inject client-side code into web pages viewed by other users. A
cross-site scripting vulnerability may be used by attackers to
bypass access controls such as the same-origin policy.

abstract class Element {

 /**

 * @var int Number of elements instantiated.

 */

 private static $number_of_elements = 0;

https://developer.wordpress.org/reference/functions/esc_attr/
https://developer.wordpress.org/reference/functions/esc_html/
https://pressidium.com/blog/wordpress-and-cross-site-scripting-xss/

 /**

 * @var string Element label.

 */

 protected $label;

 /**

 * @var string Element name.

 */

 protected $name;

 /**

 * @var mixed Element value.

 */

 protected $value;

 /**

 * Element constructor.

 *

 * @param string $section_id Section ID.

 * @param array $options Options.

 */

 public function __construct($section_id, $options = array()) {

 self::$number_of_elements++;

 $options = wp_parse_args(

 $options,

 array(

 'label' => sprintf(

 /* translators: %s is the unique s/n of the element. */

 __('Element #%s', 'prsdm-limit-login-attempts'),

 self::$number_of_elements

),

 'name' => 'element_' . self::$number_of_elements

)
);

 $this->label = $options['label'];

 $this->name = $options['name'];

 $this->value = '';

 }

 /**

 * Render the element.

 */

 abstract public function render();

}

99

class Number_Element extends Element {

 /**

 * Render the element.

 */

 public function render() {

 ?>

 <fieldset>

 <label>

 <input

 type="number"

 name="<?php echo esc_attr($this->name); ?>"

 id="<?php echo esc_attr($this->name); ?>"

 value="<?php echo esc_attr($this->value); ?>"

 />

 <?php echo esc_html(); ?>

 </label>

 </fieldset>

 <?php
 }

}

For example, a Number_Element class would look like this:

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Notice that we’re building our classes so they can all be used in the
same way. Calling the render() method on any child of Element
will output some HTML.

That’s an example of polymorphism, one of the core concepts of
object-oriented programming.

Polymorphism
“Polymorphism” means literally “many forms” (from the greek words
“poly” meaning “many”, and “morphe” meaning “form”). An Element
child class can have many forms, since it can take any form of a class
in its parent hierarchy.

We can use a Number_Element , a Checkbox_Element , or any other sub-
type in any place an Element object is expected, since all child objects
can be used in the exact same way (i.e. calling their render() method),
while still being able to behave differently (the output will differ for
each element type).

As you can probably tell, polymorphism and inheritance are closely
related concepts.

100

“

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Substitutability
The Liskov Substitution Principle (or LSP), the “L” in S.O.L.I.D., states:

“In a computer program, if S is a subtype of T, then objects of type T
may be replaced with objects of type S (i.e., an object of type T may be
substituted with any object of a subtype S) without altering any of the
desirable properties of the program.”

In layman’s terms, you should be able to use any child class in place
of its parent class without any unexpected behavior.

Factories
Let’s go back to our Field class, where we currently have a
 create_element() method creating a new Element.

10

/**

 * Create a new element object.

 *

 * @return Element

 */

private function create_element() {

 return new Element(/* ... */);

}

/**

 * Add a new element object to this field.

 */

public function add_element() {

 $element = $this->create_element();

 $this->elements[] = $element;

}

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

/**

 * Create a new element object.

 *

 * @throws Exception If there are no classes for the given element type.

 * @throws Exception If the given element type is not an `Element`.

 *

 * @param string $element_type

 * @param array $options

 *

 * @return Element

 */

private function create_element($element_type, $options) {

 $element_type = __NAMESPACE__ . '\\Elements\\' . $element_type;

 if (! class_exists($element_type)) {

 throw new Exception('No class exists for the specified type');

 }

 $element = new $element_type($this->section_id, $options);

 if (! ($element instanceof Element)) {

 throw new Exception('The specified type is invalid');

 }

 return $element;

}

A method that returns a new object is often called a simple factory
(not to be confused with “factory method”, which is a design pattern).

Knowing that any subtype is usable in place of the Element parent
class, we’ll go ahead and modify this factory, so it will be able to create
objects of any child class.

/**

 * Add a new element object to this field.

 *

 * @param string $element_type

 * @param array $options

 */

public function add_element($element_type, $options) {

 try {

 $element = $this->create_element($element_type, $options);

 $this->elements[] = $element;

 } catch (Exception $e) {

 // Handle the exception

 }

}

We start by prefixing the element type with the current name:

$element_type = __NAMESPACE__ . '\\Elements\\' . $element_type;

Next, we create a new object:

$element = new $element_type($this->section_id, $options);

The __NAMESPACE__ magic constant contains the current namespace
name.

Then, we make sure that there’s a class for the specified element type:

if (! class_exists($element_type)) {

 throw new Exception('No class exists for the specified type');

}

103

“

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

And lastly, we make sure that the newly-created object is indeed an
instance of Element:

$element = new $element_type($this->section_id, $options);

Extending
It’s worth pointing out that we’ve built our plugin to be extensible.
Adding different kinds of pages, sections, elements is as easy as creat-
ing a new class that extends Admin_Page , Section , Element etc.
These base classes do not include any code that needs to be changed
to add a new page, section, or element.

The Open/Closed Principle (or OCP), the “O” in S.O.L.I.D., states:

“Software entities (classes, modules, functions, etc.) should be open
for extension, but closed for modification.”

This means that we should be able to extend a class like Admin_Page
and reuse it, but we shouldn’t have to modify it to do that.

Now that we registered our sections, fields, and elements, we’ll
take a closer look at how we can improve the way we manage our
WordPress hooks.

104

Implementation:
Managing WordPress

Hooks

PART SEVEN

PART SEVEN

Implementation:
Managing WordPress Hooks

Up to this point, interacting with the Plugin API meant calling
 add_action() and add_filters() in the constructor of each class.

So far that approach was good enough, as it kept things simple and
allowed us to focus on learning more about object-oriented program-
ming with WordPress. However, it’s not ideal.

If an object registers all of its hooks when it’s created, things like unit
testing become tricky.

NOTE: Unit tests should test each “unit” in isolation. Even if
you’re not writing unit tests at the moment, writing testable
code will save you a lot of time refactoring later, if you ever
decide to write tests.

106

https://codex.wordpress.org/Plugin_API

Let’s take this one step further and introduce a new class to manage
our hooks, we’ll call it Hooks_Manager . This class is going to be responsi-
ble for the registration of all of our hooks. So, we’ll create a new class
with a register() method.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The Hooks Manager

class Hooks_Manager {

 /**

 * Register the hooks of the given object.

 *

 * @param object $object

 */

 public function register($object) {

 // Register the hooks the specified object needs

 }

}

interface Hooks {

 /**

 * Return the actions to register.

 *

 * @return array

 */

 public function get_actions();

}

Next, we create a new object:

107

You can think of an interface as a contract, where a class that imple-
ments that interface is “contractually bound” to implement all meth-
ods defined in that interface.

For example, a Login_Error class that hooks into the login_head action,
must implement the get_actions() method of our Hooks interface.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Login_Error implements Hooks {

 public function get_actions() {

 return array(

 'login_head' => array('add_errors', 10, 1),
);
 }

}

public function register($object) {

 $actions = $object->get_actions();

 foreach ($actions as $action_name => $action_details) {

 $method = $action_details[0];

 $priority = $action_details[1];

 $accepted_args = $action_details[2];

 add_action(

 $action_name,

 array($object, $method),

 $priority,

 $accepted_args
);
 }
}

The register() method of Hooks_Manager accepts an object, calls its
 get_actions() method and registers all of its actions.

Let’s add a get_filters() method to our interface, so we can register
both actions and filters.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

interface Hooks {

 /**

 * Return the actions to register.

 *

 * @return array

 */

 public function get_actions();

 /**

 * Return the filters to register.

 *

 * @return array

 */

 public function get_filters();

}

109

Back to our Login_Error class, we need to implement this new
 get_filters() method.

We’ll rename the register() method of our Hooks_Manager to
 register_actions() . We’ll also add a register_filters() method.
These two methods will be responsible for registering actions and
filters respectively.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Login_Error implements Hooks {

 public function get_actions() {

 return array(

 'login_head' => array('add_errors', 10, 1),

);

 }

 public function get_filters() {

 return array(

 'authenticate' => array('track_credentials', 10, 3),

 'shake_error_code' => array('add_error_code', 10, 1),

 'login_errors' => array('format_error_message', 10, 1),

);

 }

}

class Hooks_Manager {

 /**

 * Register the actions of the given object.

 *

 * @param object $object

 */

 private function register_actions($object) {

 $actions = $object->get_actions();

 foreach ($actions as $action_name => $action_details) {

 $method = $action_details[0];

 $priority = $action_details[1];

 $accepted_args = $action_details[2];

 add_action(

 $action_name,

 array($object, $method),

 $priority,

 $accepted_args

);

 }

 }

 /**

 * Register the filters of the given object.

 *

 * @param object $object

 */

 private function register_filters($object) {

 $filters = $object->get_filters();

 foreach ($filters as $filter_name => $filter_details) {

 $method = $filter_details[0];

 $priority = $filter_details[1];

 $accepted_args = $filter_details[2];

 add_filter(

 $filter_name,

 array($object, $method),

 $priority,

 $accepted_args

);

 }

 }

}

Now we can add a register() method again, which is simply going
to call both register_actions() and register_filters() .

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Hooks_Manager {

 /**

 * Register an object.

 *

 * @param object $object

 */

 public function register($object) {

 $this->register_actions($object);

 $this->register_filters($object);

 }

 // ...

112

“

What if a class doesn’t need to register both actions and filters? The
 Hooks interface contains two methods: get_actions() and
 get_filters() . All classes that implement that interface will be forced
to implement both methods.

For example, the Cookie_Login class has to register only actions, but
it’s now forced to implement the get_filters() method just to return
an empty array.

The Interface Segregation Principle (ISP), the “I” in S.O.L.I.D., states:

“No client should be forced to depend on methods it does not use.”

Meaning that what we’re doing now is exactly what we shouldn’t be
doing.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Cookie_Login implements Hooks {

 public function get_actions() {

 return array(

 'auth_cookie_bad_username' => array('handle_bad_username',

10, 1),

 'auth_cookie_bad_hash' => array('handle_bad_hash',

10, 1),

 'auth_cookie_valid' => array('handle_valid',

10, 2),

);

 }

 public function get_filters() {

 return array();

 }

}

113

We can fix this by splitting our interface into smaller, more specific
ones so our classes will only have to know about the methods that are
of interest to them.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Interface Segregation

interface Actions {

 /**

 * Return the actions to register.

 *

 * @return array

 */

 public function get_actions();

}

interface Filters {

 /**

 * Return the filters to register.

 *

 * @return array

 */

 public function get_filters();

}

114

We don’t need both get_actions() and get_filters() anymore, we
can implement only the Actions interface and get rid of get_filters()

On the other hand, Login_Error , which needs actions and filters, just
has to implement both interfaces. Classes may implement more than
one interface by separating them with a comma.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Cookie_Login implements Actions {

 public function get_actions() {

 return array(

 'auth_cookie_bad_username' => array('handle_bad_username', 10,

1),

 'auth_cookie_bad_hash' => array('handle_bad_hash', 10, 1),

 'auth_cookie_valid' => array('handle_valid', 10, 2),

);

 }

}

class Login_Error implements Actions, Filters {

 public function get_actions() {

 return array(

 'login_head' => array('add_errors', 10, 1),

);

 }

 public function get_filters() {

 return array(

 'authenticate' => array('track_credentials', 10, 3),

 'shake_error_code' => array('add_error_code', 10, 1),

 'login_errors' => array('format_error_message', 10, 1),

);

 }

}

Now that we’ve segregated our interface, we just have to update the
 register() method of Hooks_Manager to reflect our changes.

That way, we conditionally call only register_actions() , only
 register_filters() , or both, based on the interface(s) the specified
object implements.

To actually use the hooks manager:

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Hooks_Manager {

 /**

 * Register an object.

 *

 * @param object $object

 */

 public function register($object) {

 if ($object instanceof Actions) {

 $this->register_actions($object);

 }

 if ($object instanceof Filters) {

 $this->register_filters($object);

 }

 }

 // ...

$hooks_manager = new Hooks_Manager();

$hooks_manager->register($login_error);

$hooks_manager->register($cookie_login);

116

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

That’s it! We can now use that object to manage hooks across the
entire codebase.

Of course, there are several ways to manage your hooks in an
object-oriented way, we just showed you one of them. You should
experiment and find one that fits your needs.

Next, in the last part of this document, we will see how we can
handle options in an object-oriented way, talk about encapsulation,
abstraction and how to decouple your classes to create a flexible
plugin that’s easy to extend!

117

Implementation:
Options

PART EIGHT

PART EIGHT

Implementation:
Options

10

So far we only needed to store user-defined options, so we utilized the
Settings API. However, our plugin has to be able to read/write options
itself to “remember” how many times an IP address has attempted to
login unsuccessfully, if it’s currently locked out, etc.

We need an object-oriented way to store and retrieve options. During
the “Design” phase, we briefly discussed this, but abstracted away
some of the implementation details, focusing solely on the actions
we’d like to be able to perform—getting, setting, and removing an
option.

We’ll also sort of “group” options together based on their section to
keep them organized. That’s purely based on personal preference

Let’s turn this into an interface:

interface Options {

 /**

 * Return the option value based on the given option name.

 *

 * @param string $name Option name.

 * @return mixed

 */

 public function get($name);

 /**

 * Store the given value to an option with the given name.

 *

 * @param string $name Option name.

 * @param mixed $value Option value.

 * @param string $section_id Section ID.

 * @return bool Whether the option was added.

 */

 public function set($name, $value, $section_id);

 /**

 * Remove the option with the given name.

 *

 * @param string $name Option name.

 * @param string $section_id Section ID.

 */

 public function remove($name, $section_id);

}

At this point, you might be wondering why we don’t just use the
 get_option() WordPress function, instead of going into the trouble of
creating our own interface and class. While using WordPress func-
tions directly would be a perfectly acceptable way of developing our
plugin, by going a step further and creating an interface to depend on,
we stay flexible.

Ideally, we’d be able to interact with the WordPress Options API, by
doing something like this:

$options = new WP_Options();

$options->get('retries');

120

https://developer.wordpress.org/plugins/settings/options-api/

Our WP_Options class is going to implement our Options interface.
That way, we’ll be ready if our needs change in the future. For instance,
we might need to store our options in a custom table, in an external
database, in memory (e.g. Redis), you name it. By depending on an
abstraction (i.e. interface), changing something in the implementa-
tion, is as simple as creating a new class implementing the same inter-
face.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Let’s start writing our WP_Options class, by retrieving all options using
the get_option() WordPress function in its constructor.

WP_Options

class WP_Options {

 /**

 * @var array Stored options.

 */

 private $options;

 /**

 * WP_Options constructor.

 */

 public function __construct() {

 $this->options = get_option(Plugin::PREFIX);

 }

}

121

Since the $options property will be used internally, we’ll declare it
 private so it may only be accessed by the class that defined it, the
 WP_Options class.

Now, let’s implement our Options interface by using the implements
operator.

Our IDE is yelling at us to either declare our class abstract or imple-
ment the get() , set() , and remove() methods, defined in the inter-
face.

So, let’s start implementing these methods!

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class WP_Options implements Options {

 // ...

122

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Getting an option
We’ll start with the get() method, which is going to look for the speci-
fied option name in our $options property, and either return its value
or false if it doesn’t exist.

Now it’s a good time to think about default options.

class WP_Options implements Options {

 private $options;

 public function __construct() {

 $this->options = get_option(Plugin::PREFIX);

 }

 /**

 * Return the option value based on the given option name.

 *

 * @return mixed

 */

 public function get($option_name) {

 if (! isset($this->options[$option_name])) {

 return false;

 }

 return $this->options[$option_name];

 }

}

123

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Default options
As mentioned previously, we’d like to group options together, based
on their section. So, we’ll probably split the options into a couple of sec-
tions. The “General Options” section and another one for the data we
need to keep track of. Lockouts, retries, lockout logs, and total number
of lockouts—we’ll arbitrarily call this state.

We’ll use a constant to store our default options. The value of a con-
stant can’t be changed while our code is executing, which makes it
ideal for something like our default options. Class constants are allocat-
ed once per class, and not for each class instance.

NOTE: The name of a constant is in all uppercase by convention.

const DEFAULT_OPTIONS = array(

 'general_options' => array(

 'allowed_retries' => 4,

 'normal_lockout_time' => 1200, // 20 minutes

 'max_lockouts' => 4,

 'long_lockout_time' => 86400, // 24 hours

 'hours_until_retries_reset' => 43200, // 12 hours

 'site_connection' => 'direct',

 'handle_cookie_login' => 'yes',

 'notify_on_lockout_log_ip' => true,

 'notify_on_lockout_email_to_admin' => false,

 'notify_after_lockouts' => 4

),

 'state' => array(

 'lockouts' => array(),

 'retries' => array(),

 'lockout_logs' => array(),

 'total_lockouts' => 0

)

);

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

In the DEFAULT_OPTIONS nested array, we’ve set a default value for all of
our options.

What we’d like to do next, is store the default option values in the data-
base once the plugin is initialized, by using the add_option() Word-
Press function.

class WP_Options {

 public function __construct() {

 $all_options = array();

 foreach (self::DEFAULT_OPTIONS as $section_id =>

$section_default_options) {

 $db_option_name = Plugin::PREFIX . '_' . $section_id;

 $section_options = get_option($db_option_name);

 if ($section_options === false) {

 add_option($db_option_name, $section_default_options);

 $section_options = $section_default_options;

 }

 $all_options = array_merge($all_options, $section_options);

 }

 $this->options = $all_options;

 }

}

125

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Let’s take a closer look at this snippet. First, we iterate the default
options array and retrieve the options using the get_option() Word-
Press function.

foreach (self::default_options as $section_id => $section_default_options

) {

 $db_option_name = Plugin::PREFIX . '_' . $section_id;

 $section_options = get_option($db_option_name);

 // ...

Then, we check whether each option already exists in the database,
and if not, we store its default option.

if ($section_options === false) {

 add_option($db_option_name, $section_default_options);

 $section_options = $section_default_options;

}

Finally, we collect the options of all sections.

$all_options = array_merge($all_options, $section_options);

And store them in the $options property so we’ll be able to access
them later on.

$this->options = $all_options;

126

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

The WordPress options table in the database is going to have a couple
of rows, where the option_name consists of the plugin’s prefix concate-
nated to the section name.

Storing an option
Similarly, we’d like to easily store a new option in the database, and
overwrite any previous value, like this:

$options = new Options();

$options->set('retries', 4);

So, let’s implement the set() method, which is going to use the
update_option() WordPress function.

/**

 * Store the given value to an option with the given name.

 *

 * @param string $name Option name.

 * @param mixed $value Option value.

 * @param string $section_id Section id. Defaults to 'state'.

 * @return bool Whether the option was added.

 */

public function set($name, $value, $section_id = 'state') {

 $db_option_name = Plugin::PREFIX . '_' . $section_id;

 $stored_option = get_option($db_option_name);

 $stored_option[$name] = $value;

 return update_option($db_option_name, $stored_option);

}

Removing an option
Lastly, we’ll implement the remove() method, which is going to set
the option to its initial value:

We’ve bundled everything together in a single class. All options-relat-
ed data (i.e. our properties) and the implementation details (i.e. the
methods we just implemented) are encapsulated in the WP_Options
class.

/**

 * Remove the option with the given name.

 *

 * @param string $name Option name.

 * @param string $section_id Section id. Defaults to 'state'.

 * @return bool Whether the option was removed.

 */

public function remove($name, $section_id = 'state') {

 $initial_value = array();

 if (isset(self::DEFAULT_OPTIONS[$section_id][$name])) {

 $initial_value = self::DEFAULT_OPTIONS[$section_id][$name];

 }

 return $this->set($name, $initial_value, $section_id);

}

128

Wrapping everything in a single class, enclosing the internals (as if in
a capsule), essentially “hiding” them from the outside world, is what
we call encapsulation. Encapsulation is another core concept of
object-oriented programming.

Using the Options interface, we focused on what we do with our
options instead of how we do it, abstracting the idea of options, simpli-
fying things conceptually. This is what we call abstraction, another
core concept of object-oriented programming.

Encapsulation and abstraction are completely different concepts,
but clearly, as you can see, highly-related. Their main difference is
that encapsulation exists in the implementation level, while
abstraction exists in the design level.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Encapsulation/Abstraction

Dependencies
Let’s consider the following scenario:

There’s a Lockouts class, responsible for determining whether an IP
address should get locked out, what should be the duration of that
lockout, if an active lockout is still valid or has expired etc. That class
contains a should_get_locked_out() method, responsible for determin-
ing whether an IP address should get locked out. That method would
need to read the maximum number of allowed retries before an IP
address gets locked out, which is a configurable value, meaning it’s
stored as an option.

129

So, the code we just described would look similar to this:

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

class Lockouts {

 // ...

 /**

 * @var WP_Options An instance of `WP_Options`.

 */

 private $options;

 /**

 * Lockouts constructor

 */

 public function __construct() {

 $this->options = new WP_Options();

 }

 /**

 * Return the number of retries.

 *

 * @return int

 */

 private function get_number_of_retries() {

 // ...

 }

 /**

 * Check whether this IP address should get locked out.

 *

 * @return bool

 */

 public function should_get_locked_out() {

 $retries = $this->get_number_of_retries();

 $allowed_retries = $this->options->get('allowed_retries');

 return $retries % $allowed_retries === 0;

 }

 // ...

}

Basically, we’re creating a new instance of WP_Options in the construc-
tor, and then use that instance to retrieve the value of the
 allowed_retries option.

That’s absolutely fine, but we have to keep in mind that our Lockouts
class now depends on WP_Options . We call WP_Options a dependen-
cy.

If our needs change in the future, for example, we need to read/write
options on an external database, we’d need to replace the WP_Options
with a DB_Options class. That doesn’t seem so bad, if we need to
retrieve options in only one class. However, it may get a bit tricky when
there are many classes with multiple dependencies. Any changes to a
single dependency will likely ripple across the codebase, forcing us to
modify a class if one of its dependencies changes.

We can eliminate this issue by rewriting our code to follow the
Dependency Inversion Principle.

131

“

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Decoupling
The Dependency Inversion Principle (DIP), the “D” in S.O.L.I.D., states:

High-level modules should not import anything from low-level mod-
ules. Both should depend on abstractions.

Abstractions should not depend on details. Details (concrete imple-
mentations) should depend on abstractions.

In our case, the Lockouts class is the “high-level module” and it
depends on a “low-level module”, the WP_Options class.

We’ll change that, using Dependency Injection, which is easier than it
may sound. Our Lockouts class will receive the objects it depends on,
instead of creating them.

class Lockouts {

 // ...

 /**

 * Lockouts constructor.

 *

 * @param WP_Options $options

 */

 public function __construct(WP_Options $options) {

 $this->options = $options;

 }

 // ...

}

132

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

/**

 * Lockouts constructor.

 *

 * @param WP_Options $options

 */

public function __construct(WP_Options $options) {

 $this->options = $options;

}

$options = new WP_Options();

$lockouts = new Lockouts($options);

So, we inject a dependency:

We just made our Lockouts class easier to maintain since it’s now
loosely coupled with its WP_Options dependency. Additionally, we’ll be
able to mock the dependencies, making our code easier to test.
Replacing the WP_Options with an object that mimics its behavior will
allow us to test our code without actually executing any queries on a
database.

Even though we have given the control of Lockouts ’ dependencies
to another class (as opposed to Lockouts controlling the dependencies
itself), Lockouts still expects a WP_Options object. Meaning, that it still
depends on the concrete WP_Options class, instead of an abstraction.
As previously mentioned, both modules should depend on abstrac-
tions.

Let’s fix that!

133

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

/**

 * Lockouts constructor.

 *

 * @param Options $options

 */

public function __construct(Options $options) {

 $this->options = $options;

}

And by simply changing the type of the $options argument from the
 WP_Options class to the Options interface, our Lockouts class depends
on an abstraction and we’re free to pass a DB_Options object, or an
instance of any class that implements the same interface, to its con-
structor.

134

It’s worth noting that we used a method called should_get_locked_out()
to check whether the IP address should get locked out or not.

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Single Responsibility

/**

 * Check whether this IP address should get locked out.

 *

 * @return bool

 */

public function should_get_locked_out() {

 $retries = $this->get_number_of_retries();

 $allowed_retries = $this->options->get('allowed_retries');

 return $retries % $allowed_retries === 0;

}

if ($this->get_number_of_retries() % $this->options->get(

'allowed_retries') === 0) {

We could easily write a one-liner like this:

However, moving that piece of logic into its own little method, has a lot
of benefits.

If the condition to determine whether an IP address should get
locked out ever changes, we’ll only have to modify this method
(instead of searching for all occurrences of our if statement)

Writing unit tests becomes easier when each “unit” is smaller

Improves the readability of our code a lot

135

“
“

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

if ($this->should_get_locked_out()) {

 // ...

Reading this:

if ($this->get_number_of_retries() % $this->options->get(

 'allowed_retries') === 0) {

 // ...

seems to us way easier than reading that:

We’ve done this for pretty much every method of our plugin. Extract-
ing methods out of longer ones till there’s nothing else to extract. The
same goes for classes, each class and method should have a single
responsibility.

The Single Responsibility Principle (SRP), the “S” in S.O.L.I.D., states:

“Every module, class, or function in a computer program should have
responsibility over a single part of that program’s functionality, and it
should encapsulate that part.”

Or, as Robert C. Martin (“Uncle Bob”) says:

“A class should have one, and only one, reason to change.”

136

At the moment, our main plugin file contains only this:

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Revisiting the main plugin file

/**

* Plugin Name: PRSDM Limit Login Attempts

* Plugin URI: https://pressidium.com

* Description: Limit rate of login attempts, including by way of cookies,
for each IP.

* Author: Pressidium

* Author URI: https://pressidium.com

* Text Domain: prsdm-limit-login-attempts

* License: GPL-2.0+

* Version: 1.0.0

 */

if (! defined('ABSPATH')) {

 exit;

}

137

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

Once again, we’ll wrap everything in a Plugin class, this time just to
avoid naming collisions.

namespace Pressidium\Limit_Login_Attempts;

if (! defined('ABSPATH')) {

 exit;

}

class Plugin {

 /**

* Plugin constructor.

 */

 public function __construct() {

// ...

 }

}

We’ll instantiate this Plugin class at the end of the file, which is going
to execute the code in its constructor.

new Plugin();

138

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

In the constructor we’ll hook into the plugins_loaded action, which fires
once activated plugins have loaded.

public function __construct() {

 add_action('plugins_loaded', array($this, 'init'));

}

public function init() {

 // Initialization

}

We’ll also call a require_files() method to load all of our PHP files.

Finally, we’ll initialize our plugin by creating some objects in our init()
method.

public function __construct() {

 $this->require_files();

 add_action('plugins_loaded', array($this, 'init'));

}

private function require_files() {

 require_once __DIR__ . '/includes/Sections/Section.php';

 require_once __DIR__ . '/includes/Pages/Admin_Page.php';

 require_once __DIR__ . '/includes/Pages/Settings_Page.php';

 // ...

}

139

https://developer.wordpress.org/reference/hooks/plugins_loaded/

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

public function init() {

 $options = new Options();

 $hooks_manager = new Hooks_Manager();

 $settings_page = new Settings_Page($options);

 $hooks_manager->register($settings_page);

 // ...

}

NOTE: The following snippet contains only a small part of the
main plugin file. You can read the actual file at the plugin’s
GitHub repository.

Keeping your files organized is vital, especially when working on large
plugins with lots of code. Your folder structure should group similar files
together, helping you and your teammates stay organized.

We’ve already defined a namespace (Pressidium\Limit_Login_Attempts),
containing several sub-namespaces for Pages , Sections , Fields ,
 Elements , etc. Following that hierarchy to organize our directories and
files, we ended up with a structure similar to this:

Organizing the files

140

https://github.com/pressidium/prsdm-limit-login-attempts

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

.

├── includes

│ ├── Hooks

│ │ ├── Actions.php

│ │ ├── Filters.php

│ │ └── Hooks_Manager.php

│ ├── Pages

│ │ ├── Admin_Page.php

│ │ └── Settings_Page.php

│ ├── Sections

│ │ ├── Fields

│ │ │ ├── Elements

│ │ │ │ ├── Checkbox_Element.php

│ │ │ │ ├── Custom_Element.php

│ │ │ │ ├── Element.php

│ │ │ │ ├── Number_Element.php

│ │ │ │ └── Radio_Element.php

│ │ │ └── Field.php

│ │ └── Section.php

│ └── WP_Options.php

├── prsdm-limit-login-attempts.php

└── uninstall.php

Each file contains a single class. Files are named after the classes they con-
tain, and directories and subdirectories are named after the (sub-)name-
spaces.

There are multiple architecture patterns and naming schemes you
may use. It’s up to you to pick one that makes sense to you and suits
the needs of your project. When it comes to structuring your project,
the important thing is to be consistent.

141

WORDPRESS AND OBJECT-ORIENTED PROGRAMMING

142

Congratulations! You’ve completed our e-Book about WordPress and
object-oriented programming.

Hopefully you learned a few things and are excited to start applying
what you learned on your own projects!

Here’s a quick recap of what we covered in this e-book:

Requirements gathering: We decided on what the plugin should
do.

Design: We thought about how the plugin will be structured, the
relationships between our potential classes, and a high-level over-
view of our abstractions.

Implementation: We wrote the actual code of some key parts of the
plugin. While doing that, we introduced you to several concepts and
principles.

However, we barely scratched the surface of what OOP is and has to offer.
Getting good at a new skill takes practice, so go ahead and start building
your own object-oriented WordPress plugins.

Happy coding!

Conclusion

@Pressidium

Visit www.pressidium.com to f ind out more

about the award winning technology behind our

High Availability WordPress hosting.

If you’d like to take your website to the next level

then you can sign up online . Alternatively, contact us ,

and one of the team will help select the perfect plan

for your specif ic requirements.

https://pressidium.com/plans/
https://pressidium.com/contact-sales/
https://pressidium.com/
https://www.facebook.com/Pressidium/
https://twitter.com/Pressidium
https://www.youtube.com/@Pressidium

	OOP_E-book_Part_1_Final
	OOP_E-book_Part_2_Final

